Example of Diffusion in a Disordered Lorentz Gas

Bernard Gaveau ${ }^{1}$ and Alain Meritet ${ }^{2}$

Received November 15, 1982; revised April 5, 1983

Abstract

We prove a diffusion law for a disordered Lorentz gas obtained by modification of a model of Gates, Gerst, Kac in Ref. 1, even though the motion is not a Markovian one in the technical sense of the word.

KEY WORDS: Diffusion law; disordered Lorentz gas; non-Markovian process.

1. INTRODUCTION

We shall treat here the plane motion of a particle in a disordered Lorentz gas which is obtained by an appropriate modification of a model due to Gates, Gerst, and Kac. ${ }^{(1)}$ In general, a Lorentz gas is a fixed configuration of the diffusion centers (by opposition to a Rayleigh gas) between which a particle diffuses. Generally the motion of this particle is not Markovian, but we try nevertheless to demonstrate that a diffusion law is true in the sense that

$$
\begin{equation*}
\left\langle q_{t}^{2}\right\rangle-\left\langle q_{t}\right\rangle^{2} \sim C t \quad \text { if } \quad t \rightarrow+\infty \tag{1}
\end{equation*}
$$

where q_{t} is the displacement of the particle for $t \rightarrow+\infty$. We shall begin by recalling the results of Ref. 1. Then we shall define a family of random Lorentz gas models with a variable concentration β. We shall see that, as the concentration β tends to 0 , the constant C diverges like k / β (with k a constant).

[^0]
2. THE MODEL OF GATES, GERST, KAC

We consider the plane on which we have placed an infinite family of contiguous mirrors: these mirrors are all parallel to the $0 x$ axis, with integer ordinate length $1 / 2$. We denote by $x(m)$ the abscissa of the left end point of the mirror m. We make the following rule:

1. If $x(m)$ is an integer, the mirror m allows the particles coming from below to pass without deflection and reflects the particles coming from above.
2. If $x(m)$ is a half integer, the mirror m allows the particles coming from above to pass without deflection and reflects the particles coming from below.

The particle diffuses with a horizontal speed $V>0$ along the $0 x$ axis and a vertical speed at time $t: p_{t}(V)= \pm 1 .\left(p_{0}=+1.\right)$

Evidently V does not change. The position is $Q_{t}(V)=\left(V t, q_{t}(V)\right)$ and we have

$$
\begin{equation*}
q_{t}(V)=\sum_{s=0}^{t-1} p_{s}(V) \tag{2}
\end{equation*}
$$

We verify easily that $p_{t}(V)=(-1)^{[2 t V]}$, where $[a]$ is the entire part of a. We denote by $\left\rangle\right.$ the average on \mathbb{R}^{+}

$$
\begin{equation*}
\langle f(V)\rangle=\lim _{V \rightarrow+\infty} \frac{1}{V} \int_{0}^{V} f(\xi) d \xi \tag{3}
\end{equation*}
$$

A fundamental identity is that

$$
\left\langle p_{t}(V) p_{s}(V)\right\rangle=\frac{(t, s)^{2}}{t s} \chi(t, s)
$$

where (t, s) is the greatest common denominator of t, s and $\chi(t, s)$ is defined
by

$$
\chi(t, s)= \begin{cases}1 & \text { if } 2 \text { divides } t \text { and } s \text { the same number of times } \\ 0 & \text { otherwise }\end{cases}
$$

This follows from the Fourier expansion of $(-1)^{[2 s V]}$ in the series

$$
\sum_{n=(2 k+1) s} \frac{4 s}{\pi n} \sin 2 \pi n V
$$

For this model, it is demonstrated in Ref. 1 that

$$
\left\langle q_{t}^{2}\right\rangle-\left\langle q_{t}\right\rangle^{2} \sim C t \quad \text { if } \quad t \rightarrow+\infty
$$

where C is a constant explicitly determined.

3. INTRODUCTION OF THE DISORDER IN THE PREVIOUS MODEL

For each mirror m, we introduce an independent random variable $X_{m}(\omega)$ taking values 0 or 1 with probability

$$
\begin{aligned}
& \operatorname{Prob}\left(X_{m}=0\right)=\alpha \\
& \operatorname{Prob}\left(X_{m}=1\right)=\beta \quad(\alpha+\beta=1)
\end{aligned}
$$

When ω is fixed, we have a family $\left(X_{m}(\omega)\right)_{m}$. The mirror m operates if and only if $X_{m}(\omega)=1$. This is equivalent to removing in the original model each mirror with probability α. When $\alpha=0$, we are in the Gates-Gerst-Kac case. When $\alpha=1$, no mirror operates, the particle is not deflected $p_{t}(V)$ $=p_{0}(V)=+1$. In the case $0<\alpha<1$, we have a disordered Lorentz gas with concentration $\beta=1-\alpha$. The notations concerning $p_{t}(V), Q_{t}(V)$, $q_{t}(V)$ are the same as previously. $\left\rangle_{\alpha}\right.$ denotes now the average on V combined with the mathematical expectation on the configuration ω of the gas (with the concentration $\beta=1-\alpha$)

$$
\langle f()\rangle_{\alpha}=E_{\alpha}\left(\lim _{V \rightarrow+\infty} \frac{1}{V} \int_{0}^{V} f(\xi) d \xi\right)
$$

We shall show here the following result: put

$$
\begin{equation*}
\varphi(t, \alpha)=\left\langle q_{t}^{2}\right\rangle_{\alpha}-\left\langle q_{t}\right\rangle_{\alpha}^{2} \tag{4}
\end{equation*}
$$

Then we have if $t \rightarrow+\infty$

$$
\begin{array}{cc}
C_{1}(\alpha) t \leqslant \varphi(t, \alpha) \leqslant & C_{2}(\alpha) t \\
C_{1}(\alpha) \sim \frac{2 \alpha}{1-\alpha} & \text { if } \quad \alpha \rightarrow 1^{-} \tag{5}\\
C_{2}(\alpha) \sim \frac{2 \alpha}{1-\alpha} & \text { if }
\end{array} \quad \alpha \rightarrow 1^{-}-8 .
$$

k being a bounded constant when $\alpha \rightarrow 1^{-}$which we shall estimate later.

4. PRELIMINARY CALCULATION OF $q_{t}(V)$

We begin by the estimation of $p_{s}(V)$.
First case: $[2 s V]$ is odd. In this case we arrive at time s on a mirror oriented downward. If at time $s-1$, the vertical speed was positive, it becomes negative when the mirror operates and it remains positive if it does not operate. If at time $s-1$ the vertical speed was negative, it does not change regardless of the mirror position.

Second case: $[2 s V]$ is even. We arrive then at time s on a mirror oriented upward. If the vertical speed at time $s-1$ was negative, it becomes positive if the mirror operates, negative otherwise. If the vertical speed was positive at time $s-1$, it remains the same in any case.

We denote by $m\left(Q_{s}(V)\right)$ the mirror situated at position $Q_{s}(V)$. We have then the following rule from the previous discussion:

$$
\begin{equation*}
p_{s}(V)=(-1)^{[2 s V] X_{m(}\left(Q_{s}(V)\right)(\omega)}\left[p_{s-1}(V)\right]^{1+X_{m}\left(Q_{s}(V)\right)}(\omega) \tag{6}
\end{equation*}
$$

We then remark that the particle never touches the same mirror twice if $V>1 / 4$; we shall suppose that $V>1 / 4$. By definition of $\left\rangle_{\alpha}\right.$, as we are concerned only with large V, we can always suppose that. Let \mathscr{B}_{s-1} be the σ algebra generated by $X_{m\left(Q_{(}(V)\right)}(\omega)$ for $l \leqslant s-1$; we have

$$
E\left(p_{s}(V) \mid \mathscr{B}_{s-1}\right)=\alpha p_{s-1}(V)+\beta(-1)^{[2 s V]}
$$

and iterating, we obtain

$$
\begin{gather*}
E\left(p_{k}(V) \mid \mathscr{O}_{l}\right)=p_{l}(V) \alpha^{k-l}+\beta \sum_{u=l+1}^{k} \alpha^{k-u}(-1)^{[2 u V]} \tag{7}\\
E\left(p_{l}(V)\right)=\alpha^{l}+\beta \sum_{v=1}^{l} \alpha^{l-v}(-1)^{[2 v V]} \tag{8}
\end{gather*}
$$

It follows that (for $k>l$)

$$
\begin{aligned}
E\left(p_{k}(V) p_{l}(V)\right)= & E\left(E\left(p_{k}(V) \mid \mathscr{B}_{l}\right) p_{l}\right) \\
= & E\left(p_{l}(V)^{2} \alpha^{k-l}+\beta p_{l}(V) \sum_{u=l+1}^{k} \alpha^{k-u}(-1)^{[2 u V]}\right) \\
= & \alpha^{k-l}+\beta\left\{\alpha^{l}+\beta \sum_{v=1}^{l} \alpha^{l-v}(-1)^{[2 v V]}\right\} \\
& \times\left[\sum_{u=l+1}^{k} \alpha^{k-u}(-1)^{[2 u V]}\right]
\end{aligned}
$$

Thus

$$
\left\langle p_{k}(V) p_{l}(V)\right\rangle_{\alpha}=\alpha^{k-l}+\beta^{2} \sum_{v=1}^{l} \sum_{u=l+1}^{k} \alpha^{l-v} \alpha^{k-u} \psi(v, u)
$$

where

$$
\begin{aligned}
\psi(v, u) & =\left\langle p_{v}(V) p_{u}(V)\right\rangle_{0} \\
& =\left\langle(-1)^{[2 v V]}(-1)^{[2 u V]}\right\rangle=\frac{(u, v)^{2}}{u v} \chi(u, v)
\end{aligned}
$$

and

$$
\chi(u, v)= \begin{cases}1 & \text { if } 2 \text { divides } u \text { and } v \text { the same number of times } \\ 0 & \text { otherwise }\end{cases}
$$

Thus

$$
\begin{aligned}
& \left\langle q_{s}^{2}(V)\right\rangle_{\alpha} \\
& \quad=s+2 \sum_{0 \leqslant l<k \leqslant s-1}\left\langle p_{k}(V) p_{l}(V)\right\rangle_{\alpha} \\
& \quad=s+2 \sum_{0 \leqslant l<k \leqslant s-1} \alpha^{k-l}+2 \beta^{2} \sum_{1 \leqslant l<k \leqslant s-1} \sum_{v=1}^{l} \sum_{u=l+1}^{k} \alpha^{l-v} \alpha^{k-u} \psi(v, u) \\
& \quad=s+2 \sum_{0 \leqslant l<k \leqslant s-1} \alpha^{k-l}+2 \beta^{2} \sum_{1 \leqslant v<u \leqslant s-1} \psi(v, u) \sum_{l=v}^{u-1} \alpha^{l-v} \sum_{k=u}^{s-1} \alpha^{k-u}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left\langle q_{s}^{2}\right\rangle_{\alpha} \geqslant s C_{1}(\alpha, s) \tag{9}
\end{equation*}
$$

where

$$
C_{1}(\alpha, s)=1+\frac{2 \alpha}{1-\alpha}+O(s)
$$

Similarly,

$$
\begin{aligned}
\left\langle q_{s}^{2}\right\rangle_{\alpha} & \leqslant s\left(1+\frac{2 \alpha}{1-\alpha}\right)+2 \beta^{2}\left[\sum_{1 \leqslant v<u \leqslant s-1} \psi(v, u)\right]\left(\sum_{j=0}^{\infty} \alpha^{j}\right)\left(\sum_{i=0}^{\infty} \alpha^{i}\right) \\
& =s\left(1+\frac{2 \alpha}{1-\alpha}\right)+2(1-\alpha)^{2} \frac{1}{(1-\alpha)^{2}} \sum_{1 \leqslant v<u \leqslant s-1} \psi(v, u) \\
& =s\left(1+\frac{2 \alpha}{1-\alpha}\right)+C(s)
\end{aligned}
$$

where

$$
C(s)=2 \sum_{1 \leqslant v<u \leqslant s-1} \psi(v, u) \leqslant \text { const } s
$$

by the result of Gates, Gerst, and Kac, or directly by

$$
\begin{aligned}
\sum_{1 \leqslant v<u \leqslant s-1} \psi(v, u) & \leqslant \sum_{1 \leqslant v<u \leqslant s-1} \frac{(u, v)^{2}}{u v} \leqslant \sum_{1 \leqslant v^{\prime}<u^{\prime} \leqslant s-1} \frac{s}{u^{\prime 2} v^{\prime}} \\
& =\frac{\pi^{2}}{6} s+O(s)
\end{aligned}
$$

The second inequality follows from the "change of variables"

$$
u=d u^{\prime}, \quad v=d v^{\prime}, \quad\left(u^{\prime}, v^{\prime}\right)=1
$$

We have thus proved the result announced in Section 3.

5. REMARKS

In fact, if the limit

$$
\lim _{V \rightarrow \infty} \frac{1}{V} \int_{0}^{V} f(\xi) d \xi
$$

exists for almost every ω, this limit is a constant because it is a tail function for the family $X_{m}(\omega)$ and so we can apply $0-1$ law. In this case if the limits

$$
\lim _{V \rightarrow+\infty} \frac{1}{V} \int_{0}^{V} q_{t}(\xi) d \xi \quad \text { and } \quad \lim _{V \rightarrow+\infty} \frac{1}{V} \int_{0}^{V} q_{t}^{2}(\xi) d \xi
$$

exist, then they are constants and the results are valid for almost every gas configuration.

ACKNOWLEDGMENT

The authors are grateful to the referee for a great simplification in the proof of the diffusion law.

REFERENCES

1. Gates, Gerst, and M. Kac, Non-Markovian Diffusion on Idealized Lorentz Gas, Ark. Rat. Mech. Anal. 1973:106-135.
2 B. Gaveau and A. Méritet, Un Exemple de Diffusion dans un Gaz de Lorentz Désordonné, C. R. Acad. Sci. Paris 294:459 (1982).
2. J. M. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979).

[^0]: ${ }^{1}$ Mathématiques, Université de Paris VI, 4, Place Jussieu, 75230 Paris, Cedex 05.
 ${ }^{2}$ INRIA, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex.

