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Example of Diffusion in a Disordered Lorentz Gas 
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We prove a diffusion law for a disordered Lorentz gas obtained by modification 
of a model of Gates, Gerst, Kac  in Ref. 1, even though the motion is not  a 
Markovian one in the technical sense of the word. 
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1. INTRODUCTION 

We shall treat here the plane motion of a particle in a disordered Lorentz 
gas which is obtained by an appropriate modification of a model due to 
Gates, Gerst, and Kac. (1) In general, a Lorentz gas is a fixed configuration 
of the diffusion centers (by opposition to a Rayleigh gas) between which a 
particle diffuses. Generally the motion of this particle is not Markovian, 
but we try nevertheless to demonstrate that a diffusion law is true in .the 
sense that 

where qt is the displacement of the particle for t ~ + oo. We shall begin by 
recalling the results of Ref. 1. Then we shall define a family of random 
Lorentz gas models with a variable concentration ft. We shall see that, as 
the concentration/3 tends to 0, the constant C diverges like k/f i  (with k a 
constant). 
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2. THE MODEL OF GATES, GERST, KAC 

We consider the plane on which we have placed an infinite family of 
contiguous mirrors: these mirrors are all parallel to the 0x axis, with integer 
ordinate length 1/2. We denote by x(m) the abscissa of the left end point 
of the mirror m. We make the following rule: 

1. If x(m) is an integer, the mirror m allows the particles coming 
from below to pass without deflection and reflects the particles coming 
from above. 

2. If x(m) is a half integer, the mirror m allows the particles coming 
from above to pass without deflection and reflects the particles coming 
from below. 

Y 

0 • 

The particle diffuses with a horizontal speed V > 0 along the Ox axis and a 
vertical speed at time t: pt(V) = +_ 1. (Po = + 1.) 

Evidently V does not change. The position is Qt(V) = (Vt, q,(V)) and 
we have 

t - - 1  

q,(V) = ps(v)  (2) 
s = 0  

We verify easily that pt (V) = ( -  1) t2tvl , where [a] is the entire part of a. We 
denote by ( ) the average on N + 

1 foVf( ~ f ( V ) )  = lira ~)d~ 
V---~ + ~ "-V 

A fundamental identity is that 

(/ ,s)  2 
(p,(V)ps(V))= x(t,s) 

(3) 

where (t, s) is the greatest common denominator of t, s and X(t, s) is defined 
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by 

{~ if 2 divides t and  s the same number  of times 
X(t, s) = otherwise 

This follows f rom the Fourier  expansion of ( -  1) f2svl in the series 

4 s  sin 2~nV 
n = ( 2 k  + l )s  'ri'H 

For  this model,  it is demonst ra ted  in Ref. 1 that 

where C is a constant  explicitly determined. 

3. INTRODUCTION OF THE DISORDER IN THE PREVIOUS MODEL 

For  each mirror m, we introduce an independent  r andom variable 
Xm(r ) taking values 0 or 1 with probabil i ty 

P rob (X  m = 0) -- a 

P r o b ( X  m = l ) = f l  ( a + f l = l )  

W h e n  r is fixed, we have a family (X m (~0)) m . The mirror m operates if and  
only if X m (~o) = 1. This is equivalent to removing in the original model  each 
mirror  with probabil i ty a. W h e n  a = 0, we are in the G a t e s - G e r s t - K a c  
case. W h e n  a = 1, no mirror operates, the particle is not  deflected p t (V)  
= p0(V) = + 1. In  the case 0 < a < 1, we have a disordered Lorentz  gas 
with concentra t ion 13 = 1 -  a. The notat ions concerning pt (V) ,  Qt(V), 
qt(V) are the same as previously. ( )~ denotes now the average on V 
combined  with the mathemat ica l  expectation on the configurat ion ~0 of the 
gas (with the concentra t ion fl = 1 - a)  

( f (  ))~ = E~( lim \v-~+~ -Vfo f (~)d , )  
1 v 

We shall show here the following result: put  

cp(t,a) = (q2)~ _ <q,)] (4) 

Then  we have if t---> + 

< < c2( )t 

2a  if a --> 1 - (5) Cl(a) 1 - a 

2a  if a ~ 1 -  c2( ) 1 - 

k being a bounded  constant  when a --> 1 - which we shall estimate later. 



542 Gaveau and Meritet 

4. PRELIMINARY CALCULATION OF q,(V) 
We begin by the estimation of Ps (V). 
First case: [2sV] is odd. In this case we arrive at time s on a mirror 

oriented downward. If at time s -  1, the vertical speed was positive, it 
becomes negative when the mirror operates and it remains positive if it 
does not operate. If at time s -  1 the vertical speed was negative, it does 
not change regardless of the mirror position. 

Second case: [2sV] is even. We arrive then at time s on a mirror 
oriented upward. If the vertical speed at time s -  1 was negative, it 
becomes positive if the mirror operates, negative otherwise. If the vertical 
speed was positive at time s - 1, it remains the same in any case. 

We denote by m(Q~(V)) the mirror situated at position Q,(V). We 
have then the following rule from the previous discussion: 

ps(V)  = (-l)[2sV]Xm<Q,,<v"(~)[ps_l(V)]l+X'<o.,<vl>('~) (6) 

We then remark that the particle never touches the same mirror twice 
if V > 1/4; we shall suppose that V > 1/4. By definition of ( )~, as we 
are concerned only with large V, we can always suppose that. Let ~s_  l be 
the a algebra generated by Xm(Q,(V))(~o ) for l < s -- 1; we have 

E(p~(V) l ~ - l )  = aPs-l(V) + 8 ( -  1) E2~vl 

and iterating, we obtain 

k 

E(px(V)l,~,)=lh(V)a'~-' + B ~_, ak-~(-1)t2~vJ (7) 
u = l + I  

l 

E(p,(V)) = a' + fl "~, a ' - ' : ( -  1) [2vVl 
v = l  

It follows that (for k > I) 

E(pk(V)p,(V)) = e ( e ( p k ( V ) l  ~ ,  )P,) 

= E(p~(Vl2ak-'+ Bp,(V) 

Thus 

k ) 
~. ak-U(--  1)[2uvl 

u = l + l  

( ' / = ~ - t  + B a t + B ~ ~ t - ~ ( _  1)t2~vl 
v = l  

x ~,, ~-u(_ 1)I~-v1 
u = l + l  

l k 

v = l  u = l + l  

(8) 
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where 

and 

~(v,u) = (pv(V)p , (v) )  o 

= ( ( - -  1)[2vv]( - 1)[ 2~V]) -- (U,V) 2 
Ut) - -  x(., ~) 

1 
x(u,v) = 0 

if 2 divides u and v the same number of times 
otherwise 

Thus 

(4s(V))o 
= s + 2  

O < l < k < s - I  

= S + 2  E a k - l + 2 f l  2 
O < l < k < ~ s - I  

(e~(v)p,(v)L 

1 k 

E E E a'-v~-"~(v, u) 
l < l < k < s - I  v= t  u = / + l  

u - I  s--1 
= s + 2 E a k - ' +  2t 82 E ~,(V,U) ~.~ a ̀ -~ ~, a ~-" 

0< l< k <~s- 1 1 < v < u < s -  1 l = v  k = u  

Therefore, 

where 

2 
<qs>a ~ sCI (Or  

2a + O ( s )  Cl(a,s )= 1+ 1 - a  

= s ( l  + 12~aa)+ C(s ) 

C(s) = 2 ~ +(v, u) < const s 
l<<.v<u<s--1 

by the result of Gates, Gerst, and Kac, or directly by 

E ~(v,u) < E (u'v)2 
l < . v < u < s - 1  l < . v < u < s - I  Ul) l < v ' < u ' < s - I  bl12~) t 

q7 2 
- 6 s + O ( s )  

where 

(9) 

Similarly, 

~s~>o ~ ~(~+ ~ ~ + ~E ~ ~,~_ ~v,~,l( ~/)(~o ~) 
1 u 1 j =  = 

2a 1 ~, ~b(v,u) 
-- s(1 + l_-i-Z-d)+ 2 ( 1 -  a ) 2 ( 1 _  a) 2 , ~ < u < s - I  
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The second inequality follows from the "change of variables" 

u=du ' ,  v=dv ' ,  (u ' ,v ' )  = 1 

We have thus proved the result announced in Section 3. 

5. REMARKS 

In fact, if the limit 

1 v 
lim -Vfo f (~)d(  V---) ~ 

exists for almost every w, this limit is a constant because it is a tail function 
for the family X m (~0) and so we can apply 0 - t  law. In this case if the limits 

l;0v lim qt(~)d~ and lim (~)d~ 
v-++ o~ V v-++ ~o 

exist, then they are constants and the results are valid for almost every gas 
configuration. 
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