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Example of Diffusion in a Disordered Lorentz Gas

Bernard Gavean' and Alain Meritet?
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We prove a diffusion law for a disordered Lorentz gas obtained by modification
of a model of Gates, Gerst, Kac in Ref. 1, even though the motion is not a
Markovian one in the technical sense of the word.
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1. INTRODUCTION

We shall treat here the plane motion of a particle in a disordered Lorentz
gas which is obtained by an appropriate modification of a model due to
Gates, Gerst, and Kac."” In general, a Lorentz gas is a fixed configuration
of the diffusion centers (by opposition to a Rayleigh gas) between which a
particle diffuses. Generally the motion of this particle is not Markovian,
but we try nevertheless to demonstrate that a diffusion law is true in the
sense that

(gFy =gy’ ~Ct if >+ (1

where ¢, is the displacement of the particle for 7> + co. We shall begin by
recalling the results of Ref. 1. Then we shall define a family of random
Lorentz gas models with a variable concentration 8. We shall see that, as
the concentration § tends to 0, the constant C diverges like k/f (with k a
constant).
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2. THE MODEL OF GATES, GERST, KAC

We consider the plane on which we have placed an infinite family of
contiguous mirrors: these mirrors are all parallel to the Ox axis, with integer
ordinate length 1/2. We denote by x(m) the abscissa of the left end point
of the mirror m. We make the following rule:

1. If x(m) is an integer, the mirror m allows the particles coming
from below to pass without deflection and reflects the particles coming
from above.

2. If x(m) is a half integer, the mirror m allows the particles coming
from above to pass without deflection and reflects the particles coming
from below.

N

X/

The particle diffuses with a horizontal speed V' > 0 along the 0x axis and a
vertical speed at time #: p (V)= = 1. (py= +1.)

Evidently V" does not change. The position is Q,(V) = (V1,4,(V)) and
we have

-1
a(")= 3, p(¥) @

We verify easily that p, (V) = (— 1)}*"1, where [a] is the entire part of a. We
denote by ¢ ) the average on R*

— Gm L (¥
Sy = lim [ fEd 3
A fundamental identity is that

(5:5)’
(P (V)p(V)) = == X(5:9)

where (z,s) is the greatest common denominator of ¢, s and x(¢,s) is defined




Example of Diffusion in a Disordered Lorentz Gas 541

by
X(1,5) = { 1 if 2 divides 7 and s the same number of times
’ 0  otherwise

This follows from the Fourier expansion of (— 1)/**1 in the series
4s sin2an¥V
n=2k+1)s ™
For this model, it is demonstrated in Ref. 1 that
(gD —{gy*~Ct if t->+»

where C is a constant explicitly determined.

3. INTRODUCTION OF THE DISORDER IN THE PREVIOUS MODEL

For each mirror m, we introduce an independent random variable

X, (w) taking values 0 or 1 with probability

Prob(X,, =0)=«a

Prob(X,=1)=8 (a+B=1)
When w is fixed, we have a family (X,,(«)),,. The mirror m operates if and
only if X, (w) = 1. This is equivalent to removing in the original model each
mirror with probability . When a« =0, we are in the Gates—Gerst-Kac
case. When a = I, no mirror operates, the particle is not deflected p,(V)
= po(¥V)= +1. In the case 0 < o < 1, we have a disordered Lorentz gas
with concentration 8= 1- a. The notations concerning p,(¥), Q,(V),
q,(V) are the same as previously. { >, denotes now the average on V

combined with the mathematical expectation on the configuration w of the
gas (with the concentration 8 =1 — a)

= S A
e Jim L [ ae)
We shall show here the following result: put
Pt @) = (g7 — (g% 4)
Then we have if #— + oo
Ci(a)t < @(1,a) < Cy(a)t

Ci(a)~ 22 if a—>1- (5)
l -«

2a
-«
k being a bounded constant when a—> 1~ which we shall estimate later.

if a->1"

Cy(a)~
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4. PRELIMINARY CALCULATION OF ¢,(V)

We begin by the estimation of p (V).

First case: [25V] is odd. In this case we arrive at time s on a mirror
oriented downward. If at time s — 1, the vertical speed was positive, it
becomes negative when the mirror operates and it remains positive if it
does not operate. If at time s — 1 the vertical speed was negative, it does
not change regardless of the mirror position.

Second case: [2sV] is even. We arrive then at time s on a mirror
oriented upward. If the vertical speed at time s —1 was negative, it
becomes positive if the mirror operates, negative otherwise. If the vertical
speed was positive at time s — 1, it remains the same in any case.

We denote by m( Q,(V)) the mirror situated at position Q.(V). We
have then the following rule from the previous discussion:

(V)= (- 1)[2sV1Xm( o V”(w)[}’s_ N V)] T+ X g,c0(@) (6)

We then remark that the particle never touches the same mirror twice
if ¥ > 1/4; we shall suppose that ¥V > 1/4. By definition of { >,, as we
are concerned only with large ¥, we can always suppose that. Let %, _| be
the ¢ algebra generated by X, y)(w) for / <5 —1; we have

E(p,(V)| Bo—1) = ap, (V) + B(—1)*V
and iterating, we obtain
k
E(pe(V)| %)) =p (V)" "+ B .2, 1a"‘“<—1)”“’“ ()
!
E(p(V))=a'+ B3 o' (= 1M (8)
v=1

It follows that (for k > I)
E(p(Mp(V)) = E(E(pe(V)| %, )p1)

=E(P1(V)2“k_]+BP1(V) Ek: “kﬂ(“l)[w])

u=I1+1

— Olk_l'l' B{al'*'ﬂé al—U(__l)[th]}
p=1

X

k
2 ak~u(_1)[2uV]
u=1I+1

Thus

/ k
(MY ="'+ B2 > o' "o " "Y(v,u)

v=1u=171+1
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where
Y(o,u) = (p(VIPu(V))g

- <( )[ZUV 2uV]> — %?‘X(u, v)
and

X(, D) = { (1) if 2 divides u and v the same number of times

otherwise
Thus
(7)),
=s+2 (ee(V)P1(V))
O<i<k<s~1
I k
=s+2 ak '+ 282 > > aTteF T (o,u)
O0<i<k<s~1 I<i<k<s—lo=lu=/[+1
u—1 s—1
=s+2 ak~'4 282 > Y(v, )2 al7t >k
O<l<k<s~1 I<o<uss—1 I=y¢ k=u
Therefore,
<qs> sCy(a,s) (9
where
2
Ciass) =1+ =5 ~+0(s)
Similarly,

I<o<u<s—1
2a 2 1
s(1+ 1_O‘)+2(1—aﬂ) —

( - 0()2 I<v<u<s—1

oo 2 )eow] | S v Se)(Se)

Y (v, u)

=s(1+ — )+ c()
where

C(s)=2 > ¥(v,u) < const s

I<o<u<s—1

by the resuit of Gates, Gerst, and Kac, or directly by

S wewm< s U w s

2,
I<o<u<s—1 I<o<u<s—1 uv 1<v<u<s 1w

2
= 7%s+ O(s)
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The second inequality follows from the “change of variables”
u=du, v=dv, (W, v)=1

We have thus proved the result announced in Section 3.

5. REMARKS
In fact, if the limit

lim L fo Gr

exists for almost every w, this limit is a constant because it is a tail function
for the family X, (w) and so we can apply 0-1 law. In this case if the limits

. 1 v . 1 (V2
1 lim L f d
A,y [ e md in g [la@ade
exist, then they are constants and the results are valid for almost every gas
configuration.
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